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Abstract

Some important advances took place during the last several years

in the development of genuinely multidimensional upwind schemes

for the comprcssible Euler equations. In particular, a robust, high-

resolution genuinely multidimensional scheme which can be used

for any of the flow regimes computations was constructed (see [1-

3]). This paper summarizes bricfly these developments and outlines

the fundamental advantages of this approach.

* This work was supported by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-19480 while the author was in residence at the

Institute for Computer Applications in Sciencc and Engineering (ICASE), NASA

Langley Research Ccntcr, Hampton, VA 23681-0001





1 INTRODUCTION

The efficiencyof the existing steady-statemultigrid solversroutinely usedfor
the flowproblemsin engineeringpractice is still verypoor. Thereclearly exists
a pressingneedfor moreefficient algorithms.

In orderto obtain atruly efficient steady-statesolver,somefundamental issues

concerning different aspects of an algorithm need to be addressed. The recently

proposed genuinely multidimensional approach towards the construction of

the discrete schemes for the compressible flow resolves some of these issues. A

discussion in this regard is the main subject of this paper.

1.1 Genuinely multidimensional schemes

The quest for a genuinely multidimensional upwind scheme began more than

a decade ago. Initially it was motivated chiefly by the expectation that, once

such a scheme is developed, it will imitate the physics of the fluid flow more

accurately than the standard dimension-by-dimension approach. It was, how-

ever, suggested later in [4],[5] that improving the efficiency of the the steady-

state solvers may be the most important reason for developing the genuinely

multidimensional approach.

One of the main difficulties in the numerical treatment of compressible flow is

the possible presence of shocks in the solution. It is well known that a scheme

that is both second order accurate and avoids under- and overshoots (which

may trigger a nonlinear instability) near discontinuities has to be nonlinear.

Such a scheme has to incorporate the so-called high-resolution mechanism,

i.e. a smoothness monitor, that is usually implemented in the form of a ttux-

limitcr. Initially, such schemes were developed for the one-dimensional case.

Then, extending this approach to multidimensions was done on a dimension-

by-dimension basis. The well known fact, however, is that the Gauss-Seidcl re-

laxation is unstable when applied in conjunction with such schemes [6]. There-

fore, the standard multigrid solvers have to resort to the defect-correction

technique or multistage Rungc-Kutta relaxation and the efficiency of such

solvers may be poor. A closer look reveals that the standard high-resolution

discretizations suffer from the following deficiency: the high-frequency error

components may be (nearly) invisible to the residuals of the discrete equa-

tions, i.e. the discrete scheme is (nearly) unstable. In turn this means that

it may be inherently impossible to construct a good smoother (an important

ingredient of a multigrid solver) using these discrete schemes.

A genuinely multidimensional advection scheme was constructed in [4,5]. The

scheme was named "genuinely multidimensional" since it imitates well the



anisotropyof the advectionphenomenain two dimensions:artificial dissipation
is addedonly alongthe streamline,whilethe high-resolutionmechanismaffects
significantly the cross-flowdirection only. The key feature of this schemeis
the two-dimensionallimiter, i.e. the argumentof a limiter-function is the ratio
of finite differencesin two different coordinate directions. The schemewas
formulated in the control-volume context for Cartesian grids and relied on
the compact9-point-box stencil. The fundamental advantage of this approach

is that the two-dimensional high-resolution mechanism does not damage the

stability properties of the discretization.

The so-called "residual distribution" (or "fluctuation-splitting') schcmcs for

scalar advection equation on unstructured triangular grids were presented in

[7]. It was found later that these schemes have some links to the aforemen-

tioned genuinely two-dimensional control-volume approach for the advcction

equation. Exploration of thcsc links led to the unification of the two approaches

and resulted in a scheme that incorporated two-dimensional limiters and was

formulated for unstructured triangular grids. This scheme (like that presented

in [4],[5]) can bc given a purely algebraic interpretation. Howcvcr, the task of

extending these ideas to systems of equations appeared to bc a complicated

one.

Consider a hyperbolic system of partial differential equations in two dimen-

sions

ut + Au_ + Bu_, = O, (1)

where u is the vector of size N and A, B are N x N matrices. The matrices

A and B in general do not commute. This means that they cannot bc di-

agonalizcd simultaneously, i.e. the system cannot be written as N advection

equations.

A prolonged effort was to represent locally the physics of compressible flow by

finite number of simple waves using the local gradients of the solution (in the

spirit of [8]) with intention to apply a genuinely two-dimensional advcction

scheme to each one of the simple waves. Howcvcr, the schemes constructed in

this way for the Eulcr equations suffered from a severe lack of robustness.

The breakthrough approach that resulted in a robust genuincly multidimen-

sional scheme, suitable for the computations of the entire range of the flow

regimes was presented in [1]. Then it was described in more detail including the

implications for multigrid and extension to 3D in [2] and [3]. The key idea was

not to try to apply the multidimensional advection schemes to systems, but

rather the same strategy that was used to construct the scalar scheme. The al-

gebraic interpretation of the advection scheme playcd an important role at this

point. It was crucial to recognize that a certain linear first order scheme based



on standard upwind methodology can be used as a basic building block for the

hyperbolic systems as well as for the scalar advection. The multidimensional

high-resolution corrections are then applied in a formal way similarly to the

scalar case. The resulting scheme for the Euler equations was demonstrated

to produce a very good quality solution for subsonic, transonic and supersonic

regimes. The approach was called "genuinely-multidimensional" since it can

be argued that it leads to a discrete scheme whose artificial dissipation is a

rotationally-invariant differential operator (in other words the artificial dis-

sipation operator is independent to a certain extent of the grid direction). It

was not clear if this particular property is of any direct practical importance.

The constructed high-resolution scheme for the Euler equations relics on a

compact stencil. The result of this property is a smaller error in smooth regions

and better resolution of discontinuities, comparing to the standard dimension-

by-dimension approach. However, in our view, these are only marginal im-

provements. The fundamental advantage of this approach is that it leads to

a scheme that combines high-resolution and good stability properties. It was

demonstrated in [2,3] that the Collective Gauss-Scidcl relaxation is stable

when applied directly to the resulting high-resolution discrctization of the hy-

perbolic systems. This results in a very simple, efficient and robust multigrid

solver for the compressible Euler equations, suitable for the entire range of

flow regimes.

Some researchers who were previously pursuing other directions adopted the

genuinely-multidimensional approach proposed in [1 3] and attributed to it
a term "Positive Matrix Distribution Schemes". A modification of the un-

derlying first order scheme (the system N-scheme) aimed at improving the

discontinuity resolution was proposed by van der Weidc and Dcconinek in [9].

It should be mentioned that important steps towards the construction of a

genuinely multidimensional schemes for the Euler equations were made by

Colella [10,111, LeVeque [12] and Radvogin [13]. However, the nonlinear high-

resolution corrections in these schemes rely on one-dimensional limitcrs, which

introduces some of the dimension-by-dimension flavor.

Another very interesting approach was proposed in [14]. A discrctization for

the triangular unstructured grids for the Euler equations was developed. The

problem was that the scheme was linear, i.e. it did not incorporate any non-

linear high-resolution mechanism.

1.2 Multigrid for advection dominated problems

One of the major reasons for the poor efficiency of the standard flow solvers

(see [15]) is the fact that for advection dominated problems the coarse grid
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providesonly a fraction of the neededcorrectionfor certain error components.
It is well known that the steadyEuler equationscontaintwo different factors:
the advcction and the Full-Potential type operators.The latter is either of
elliptic or hyperbolic type dependingon the flow regime (subsonicor super-
sonic).The difficulty mentioned abovecan be avoided([15]) by constructing
a solverthat distinguishesbetweendifferent factors of the systemand treats
eachoneappropriately. In the subsoniccase,for instance,the advectionfactor
canbe treatedby marchingand the elliptic factor by multigrid. The efficiency
of such an algorithm will be essentiallythe sameas that of the multigrid
solverfor the elliptic part only.Suchalgorithms are referredto as "essentially
optimal". An approachto achievea separation betweenthe co-factors the
so-calledDistributive Gauss-Seidelrelaxation wasproposedin [15]. It was
demonstratedin [16] that usingthis approachone canobtain the essentially
optimal multigrid efficiencyfor a staggered-griddiscretization of the incom-
pressibleNavier-Stokesequations.It is interesting to mention that a similar
observationwasmadeearlier in [17].

A related approachwas proposedby Ta'asan [18] for the incompressibleand
compressiblesubsonicEuler equations.The staggered-griddiscrctization is
basedon the canonical variables formulation (see [19]), that expresses the

partitioning of the steady Euler equation into elliptic and advcction factors.

The essentially optimal multigrid efficiency was demonstrated using this ap-

proach for subsonic flow and body-fitted grids. A possible limitation of this

approach may bc that it is not directly generalizable for the viscous flow.

Another way towards achieving the optimal multigrid efficiency is based on the

pressure equation formulation of the Euler equations. We describe it briefly in

this paper as well. This approach is based on a very old idea and is a general-

ization [20]. Its main virtue is simplicity. It can also bc classified as Weighted

Gauss-Scidcl relaxation [15]. An extensive set of numerical computations us-

ing this scheme together with more details regarding the implementaion is

reported in [21]). The limitation of this approach, however, is that it is not

clear so far if it is generalizable to viscous compressible flow.

Following the work of Ta'asan, some researchers attempted to apply the idea of

partitioning the Eulcr equations towards the construction of discrete schemes

(scc [22] and [23]). It is well-known that the two-dimensional Eulcr equations

in supersonic case can be written as four locally decoupled advection equations

(scc [24]). This property was used as a basis for applying the advcction schemes

to discretize the system in this case. In subsonic case, however, the distinc-

tion was made between the advection and the elliptic ("acoustic subsystem")

partitions. The treatment of transonic flow, however, was problematic since it

required matching of two different discrctizations accross the sonic lines. An-

other drawback of these approaches was that they are cannot be generalized

to three dimensions (sec [9]). To conclude, the discrctc schemes constructed in



this waysufferedfrom a lack of robustnessand generality.No optimal multi-
grid efficiencywasdemonstratedeither. Finally, someof the researcherswho
previouslyfollowedthis direction adopted thegenuinely-multidimensionalap-
proachproposedin [1 a] (see[9]).

1.3 What this paper is about

In this paper wc first present a brief review of the construction of genuinely

multidimensional schemes for the scalar advcetion and the compressible Euler

equations. We summarize the basic properties of the discrctizations, emphasiz-

ing those that are unique to this approach and are of fundamental importanec

for practical purposes.

Thc separation of the co-factors can bc in gcneral achieved in two ways. One

way is to cast equations into such a form that the different co-factors can be

discretizcd separately. The canonical variables approach by Ta'asan [19] can

be classified as such. The pressure equation based schemc, presented briefly in

this paper, belongs to this catcgory as well. The key advantagc of this type of

methods is in their simplicity (this is especially true for the prcssurc equation

based scheme). The disadvantagc, though, may bc in thc unsufficient gencr-

ality. Another more general way to achievc the optimal multigrid efficiency

(see [15]) is to diserctizc the equations in some primitive form and to apply

a rclaxation of the Distributivc Gauss-Scidel type. Such relaxation should bc

designed in such a way that it distinguishes between the different co-factors

of the system and treats each one of thcm appropriately. It appears, however,

that in order to achieve this not any discrete schemes are suitablc, but only

thosc satisfying a ccrtain condition. As it was mentioned before, it is not clear,

what are the direct practical implications of the genuine multidimensionality

(or the rotational invariancc of thc artificial dissipation) property of the ap-

proach. However, we present in this paper a heuriste argument suggesting that

the genuine multidimensionality is closely related to the factorizability prop-

erty of the discrctization. The latter is of fundamental practical importance.

It is necessary in order to construct a Distributive Gauss-Seidel relaxation

that will allow to decouplc the advcction and Full-Potential co-factors of the

Eulcr system and thus to obtain an optimally cfficient multigrid solver. This

approach is very general since it does not require to cast the equations into

any spccial form.
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Fig. 1. Triangle.

MULTIDIMENSIONAL UPWINDING

In this section wc briefly review the construction of the high-resolution gen-

uinely multidimensional upwind schemes for the scalar advection equation and

for the Euler system. Consider a general triangular grid covering the domain.

Assume the discrete unknowns are defined at the grid nodes thus defining a

linear function and allowing us to evaluate the gradients of the current so-

lution approximation on each triangle. The approach is to construct discrete

equations which are to be solved at each node from the portions of the residu-

als of the equations computed on the triangles having this node as a common

vcrtcx. In other words, portions of the residual of the equation evaluated on a

particular triangle contribute to the construction of the discrete equations at

the nodes of this triangle. The problem is to find the exact rules for this con-

struction, so that the resulting discrete equations will havc certain desirable

properties.

2.1 Advection scheme

Wc consider triangular clement T, and choose two out of the threc faces. Thcn

wc write the advcction equation we wish to solve in the local coordinate system

aligned with these two faces

ut + aux + buy = 0 (2)

Without loss of generality wc can consider a linear constant coefficient equa-

tion, since in general non-linear case we can linearize the equation on each

triangle ([25]).

Wc can write the discrete equation at the grid node i in the following form

ci,iui - E ci,_uj = O,
j#i

(3)



Definition 1 The discrete scheme (3) is said to be of the positive type if ci,j >_

0 for all j.

Numerical soltuions obtained using a positive scheme satisfy a discrete max-

imimum principle. This property is useful to ensure that the discrete solution

will be non-oscillatory near discontinuities.

We shall outline hcrc the construction of a positive advcction scheme. Residual

of the equation (2) can be represented as a sum of two portions

r = rx + rY, (4)

where

r _ = --STauh_; r y = --STbuhu. (5)

Residual of the equation (2) on the triangle T contributes to the construction

of the discrete equations to be solved at each of the three nodes of the triangle

according to the following residual distribution formulae

node 1 _-- r_(1 - sign(a))

node 2 *-- rX(1 + sign(a)) + r_(1 - sign(b)) (6)

node 3 _-- rU(1 +sign(b))

It easy to see that this construction results in a positive scheme since for any

real number z we have the following inequality +z(1 + sign(z)) > 0. The

accuracy of such a scheme, though, is only first order.

Definition 2 A discrete scheme is called linearity preserving if whenever the

residual r on the triangle T vanishes, the contributions due to this residual

lead to a zero update of the solution at each of the three nodes of the triangle.

A linearity preserving scheme is second order accurate.

Define the following quantities

r _" = r _ + rUqY(q); r u* = rU + rX_(q)/q (7)

where q = -r_/r _. In this paper we assume that ko is the minmod limitcr. Sub-

stituting r _', r y_ instead of r x, r y into (6) wc obtain a high-resolution scheme.

The important feature hcrc is the two-dimcnsionality of the limitcr, i.e. the fact

that the argument of the limiter-function is a ratio of numerical derivatives in

two different coordinate direction ([5],[4]).
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Using the following limiter identity

rYqd(q) =_ --r_(q)/q, (8)

it is easy to vcrify that the constructed nonlinear scheme is indeed both positive

and linearity preserving.

2.2 Extension to the Euler system

Consider a hyperbolic system of partial differential equations

ut + Au_ + Buy = O. (9)

The discrete equation approximating (9) at node i can bc written as follows

=o,
j¢i

(10)

Property of positivity can be formally extended to the system case.

Definition 3 The discrete scheme (10) is said to be of the positive type if the

matrices Ci,j (for all j) have non-negative eigenvalues.

It is not clear, however, how to generalize the maximum principle for sys-

tems. No conclusions can be derived from the positivity property unless the

additional assumption about thc symmetry of the matrices Ci,j is made. The

energy stability property of the scheme can be demonstrated in this case.

However, for the Eulcr system, this would require the use of the symmetriz-

ing variables formulation, which is non-conservative. This makes the energy

stability property too restrictive to bc of substantial practical importance for

the Eulcr equations.

It is interesting to note though that the standard high-resolution schemes, if

carefully implemented, are of the positive type. Therefore, we aimed at con-

structing a genuinely multidimensional high-resolution scheme ([1 3]), which

is of the positive type as well.

Assume that the hyperbolic system of equations (9) is written in the non-

orthogonal coordinate frame aligned with the two of the faces of triangle T

(Fig.l). Residuals of the system on triangle T can be represented as a sum of

two portions

R = R _ + R y, (11)
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where

(12)

Considerthc following residual distribution formula

node 1+- R_(I- sign(A))

node 2 _ RX(I + sign(A)) + RU(I - sign(B))

node 3 _--RU(I +sign(B))

(13)

Assuming that matrix M has a complete set of real eigenvalues (definition of

the hypcrbolicity of a system) it is easy to see that matrix +M(I 4- sign(M))

is non-negative definite. This means that the scheme defined by (13) is of the

positive type by construction (as an upwind scheme is expected to be).

In order to obtain a positive high-resolution genuinely multidimensional scheme

for a hyperbolic system we may have first to rewrite system (9) (as it was done

in [1 31) in a different set of variables. The auxiliary variables v = (s, u, v,p) T

(see [1 3]) arc a good choice for the Euler system (here s is the entropy, u, v

the velocity components and p is the pressure). System (9) rewritten in

varibales v takes the following form

vt + Av_ + Bvy = 0 (14)

where

u = Tv (15)

As before, we can compute residual r of system (14) on triangle T and represent

it as a sum of two portions:

r = r x + r u, (16)

where

(17)



Consideringthe following residual distribution formula

node 1 _ Tr_(I - sign(M))

node 2 _ T[r_(I + sign(A)) + rV(I - sign(B))]

node 3 *-- TrY(I + sign(B)),

(18)

we arrive at a positive first order accurate scheme that is identical to (13).

Introduce the following quantities

r i = r i + r_qJ(qi); r i = r_ + r_gC(qi)/q, (19)

with qi = -r_/r_, and i = 1,...,N Denote by r x" and r v" vectors whose
x* Y*

components are r i and r i (i = 1,..., N) respectively. The high-resolution

genuinely two-dimensional schemc can be obtained by substituting r _* and r v*

instead of the r _ and r v into (18).

Using the limiter identity

rY_(qi) - -r_kO(q,)/qi, for i= 1,...,N (20)

it is possible to show that the genuinely two-dimensional high-resolution scheme

is both positive and lincarity preserving. We emphasize here again, that in

order to achieve this propcrty for the Eulcr equations, it was necessary to

use another (non-conservative) form of the equations when introducing the

high-resolution mechanism ([1 3]). The auxiliary variables formulation was

suitable for this purpose. The only justification for the desirability of the pos-

itivity property for systems of equations is that the standard high-resolution

schemes, if properly implemented, have this property.

Remark 4 Recall that when constructing a discrete scheme we have chosen

arbitrarily two out of three faces of the trinagle T (see Fig. 1) for the purpose of

numerical derivatives evaluation. Note, that any choice will result in a scheme

with good properties. In the case of the scalar advection, though, if we use

two faces which are both of the same kind with respect to the flow direction

(inflow or outflow), the resulting scheme will rely on the narrowest possible

stencil. Therefore, it will have a smaller cross-stream error coefficient and will

provide a somewhat better disontinuity resolution. It is possible in the case of

the Euler system to optimize the resolution of a specific sharp layer (shock,

contact discontinuity or shear layer) by the appropriate choice of the faces

(two "closest" to the layer direction. In general, though, it seems reasonable

to choose two faces which are either inflow or outflow. This will provide better
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resolution of the contact discontinuities and shear layer, while shocks are well

resolved anyway.

In addition to the smaller error in smooth regions and sharper resolution of

discontinuities (compared to the standard dimension-by-dimension methods),

the constructed scheme also offers a possibility to optimize the stencil in order

to rcsolve a particular discontinuity layer (by choosing two faces of a triangular

element that are the closest to the direction of this layer). The important

advantage of this approach, howevcr, is that the genuinely multidimcnsional

approach prcsented hcrc leads to a scheme which has both high-resolution and

good stability properties.

3 SEPARATION OF CO-FACTORS

Incompressible stcady Eulcr equations in two dimensions can be written in

thc following matrix form (assuming that the fluid dcnsity p _ 1)

Lu=O, (21)

where

u =  ,p)L (22)

Qoo_]
L= OQOu ,

O_ Oy 0

(23)

and Q = U. V is the advection operator. In order to find out what is the type

the system of equations we can look at the determinant of matrix L

det(L) = -Q2A (24)

The co-factors of the dctcrminant are of the advection and another of thc

elliptic types.

Compressiblc stcady Euler equations in two dimcnsions can be written in the

following matrix form

Lu=O, (25)

11



where

u = (s, u, v, p)r, (26)

L __

'Q o o o

OpQO ox

O O pQ

0 pO x pOy 1

(27)

The determinant of matrix L in this case

det(L) = p2(Q)2[1Q 2- A]
c _

(28)

The determinant has two distinct co-factors: one of advcction and another of

the Full-Potential type.

In thc rest of this paper wc shall consider the subsonic rcgimc only. The Full-

Potential factor in this case is of the elliptic type.

It was suggested in [15] that the different co-factors should also bc treated

differently (each one in thc appropriate way). One way to do this is to cast the

equations into such a form that the co-factors can bc discrctizcd separately.

Canonical variables formulation [18] as well as the pressure equation based

schemes, that are described in the next section, belong to this category. A more

general approach (as proposed by Brandt in [15]) is to discrctizc the equations

in some primitive form, but to design relaxation of Distributive Gauss-Scidcl

type (DGS) such that it will separate the treatment of co-factors. However, the

discrete scheme suitable for this purpose should be factorizable, i.e. satisfy the

discrete analog of the property (28). Wc show in this paper that the genuinely

multidimensional upwind approach leads to a factorizable scheme.

4 PRESSURE EQUATION APPROACH

In this section we briefly describe the pressure equation based approach first

for incompressible and then for compressible cases.

12



3.1 Incompressible case

Considering a triangular (unstructured) grid and assuming that the unknowns

are located at grid vertices, we can define picccwize-lincar functions approxi-

mating each unknown. Residual of the Euler equations can then be evaluated

on each triangular element of the grid:

r = Lhu h, (29)

where u h = (u h, v h, ph)T,

L h __

( o o)
o

(30)

and

Qh = uhoh -+- vhOhy (31)

is the discrete advection operator.

We would like then to construct the discrete equations to bc solved at a certain

grid node by assembling in a certain way thc residuals of the Eulcr cquations

computed on the triangular element having this node as a common vcrtex.

Thesc equations can bc written in the following form

phr -- phLhuh = 0 (32)

In order to obtain the equations with desirable properties, i.e. to achieve the

decoupling of the co-factors, we can define the following assembly matrix ph

I 0 0

ph= 0 I 0

a2 (Q,)h

(33)

where

(Q,)h(fh) = _Oh(uh fh) _ Oh(vh fh ) (34)

13



is the operator adjoint to Qh. Then

ph r __ Qh Qh 0_

0 A h
luhlV h

ph

+ s.p.t. (35)

where A h is thc discrete Laplacian and "s.p.t." stands for subprincipal terms

which appear due to the non-constancy of the advection coefficients and are

not important for the purpose of constructing a rclaxation scheme [15]. The

maxtrix of the finite difference operators in (35) is upper-triangular. The pres-

sure is subject to a Poisson equation wich is dccoupled (upto subprincipal

terms) from the rest of the system. The standard Gauss-Scidel relaxation

can, therefore, bc applied to it as a smoothcr. The momentum equations can

be looked at as advcction equations with (known) forcing terms (pressure

derivatives). The ideas of multidimensional upwinding can bc applied to dis-

crctizc them. The strategy applied to relax the system can be then to relax

the pressure first and then to update the velocities components by relaxing

the momentum equations in the downstream direction. An extensive set of

computational results using this approach is presented in [21].

4.2 Compressible case

Similarly to the incompressible casc, residuals of the cquations can bc evalu-

ated on each triangular element:

r = Lhu h, (36)

where u h = (s h, u h, vh,ph) T and

Qh

0
Lh-

0

0

0 0 0

p_Q_ o 0_

0 phQa c9h

h h 1 hpO_ h hp Oy (c-_Q

(37)

and ch is the (discrete) speed of sound. Again, we construct the discrete equa-

tions to be solved at each node assembling in a certain way the residuals of

the equations on the elements surrounding this node

phr -- phLhuh = 0 (38)

14



Choosing the assembly matrix to bc

ph _=

riO 0 0

010 0

00I 0

o 02 (Q,)h

(39)

we obtain

ph r z

Qh 0 0 0

o phQ_ 0 a_

o o
0 0 0 A h 1-(c_)---_(Qh)_

u h

v h

ph

+ s.p.t. (40)

The principal part of last equation is the discrete Prandtl-Glauert (or Full

Potential) operator acting on the pressurc. This operator is of the elliptic type

in the subsonic regime. The solution process of the resulting discrete equa-

tions is very similar to that for thc incompressible case. Some numerical tests

illustrating the efficiency of thc multigrid solver based on this diserctization

arc prcscntcd in thc §6.2.

5 UPWINDING AND CO-FACTORS SEPARATION

Now we return to the genuinely multidimensional upwind approach. We would

like to construct a linear first order upwind "positive" scheme such that it is

factorizable and is also upgradable to second order using the genuinely two-

dimcnsional high-rcsolution mechanism.

First, wc shall take a closer look at the one-dimensional case.

5.1 One-dimensional case

Consider a first ordcr upwind scheme for the one-dimensional Eulcr cquations.

Without loss of generality we consider the primitivc variable formulation

Lhu h = 0 (41)
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where

u h = (sh, uh, ph)V (42)

and

L h __

h h Q2h-_l_la_ + o o

0 p(_h h Q2h) _h h_

o p(a__ _ _ _Q_- -_a_)_ -_a_ +

(43)

where h is a meshsize, 0_h is a central approximation of the second derivative,

c_2h is a central approximation of the first derivative and Q2h = uO2h is the

advcction operator.

5.1.1 Factorization

The determinant of Lh:

det(L h) = p(-hlul_ x + Q2h)[(1 _ M2)i)_=] (44)

The first factor is the upwind scheme approximating an advection operator

corresponding to the entropy equations. The Full-Potential factor is approxi-

mated by a "short" central difference. The issue of factorization appears to bc

trivial in this case, since the momentum and the pressure equations correspond

solely to the elliptic factor.

5.1.2 Distributive Gauss-Seidel relaxation

Introducing new variables

(s h, uh,ph) T = u h = Mhw h = Mh(s h, wh,¢h) T (45)

the Euler system will take the following form

LhMhw h = 0 (46)
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Fig. 2. One-dimensional grid

10 0 /1lab _Q2h a2h h _ah0 - _ 7_ + _: - 5-_

O - p( O_h h _,ah _ h h 2h- _-x_, p(_cOL-O )

(47)

we obtain

L h M h

I h h Q2h

-_lulO2_+ 0 0

0 p(l- M2)Oh_ 0

- M )O_0 0 p(1 2 h

(48)

The philosophy of the Distributive Gauss-Seidcl relaxation is as follows: We

would like to store at the gridpoints the primitive variables u and not the

auxiliary variables w. For this purpose the updates in w and 4) corresponding

to the relaxing the elliptic factor at point i should bc translated into the

updates in u,p at points (i- 1), (i), (i + 1) according to M h.

5.1.3 DGS relaxation and the Riemann solver

It is well known that thc one-dimensional Euler system can be diagonalized,

i.e. rewritten as a set of (locally) decoupled advection equations for the char-

acteristic variables (s, a +, a-) T, where

+ (49)ax = pcux + Px, and a_- = pcu_ - Px.

Some algebra reveals that relaxing the Full-Potential (elliptic) factor corre-

sponds to:

at point (i - 1) - update c_+, keep c_- the same;

at point (i + 1) - update a-, keep a + the same;

at point i - update both a + and a-.

We can conclude that there arc some links between the characteristic variables

formulation (approximate Riemann solver) and the design of the DGS.
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5.2 Two-dimensional case

We shall look now for a factorizable upwind scheme in two dimensions.

5.2.1 Dimension-by-dimension approach

Considering here the iscntropic case (no loss of generality for the purpose of

the discussion presented hcrc), we can write such a scheme in the following

symbolic form

Lhu h = 0 (50)

Thc modificd equations (or the First Differential Approximation FDA) cor-

responding to the scheme dimension-by-dimension

FDA(L a) =

p[-_(cOxx+ Ivlay_)+ Q]

0 O_ -hi I

_uOxx

0 p[-h(lulox_+cOyy)+Q] oy -hl-_-_vOyy (51)

p(O_ - h v h _-/x+ Q_o_) 2cp(Ox h u- __o_.)

It is easy to sec that the matrix (51) cannot be factorized.

5.2.2 Genuinely multidimensional approach

The approach towards the construction of discrete schemes for the Eulcr equa-

tions ([1,2]) was called "genuinely multidimensional" since it leads to schemes

that retain (to a certain extent) the rotational invariance property of the Eu-

lcr equations. Namely, it can be argued that the artificial dissipation terms

present in these schemes approximatc a rotationally invariant differential oper-

ator. In its turn this may mean that the waves oblique to the grid are "properly

upwinded" or, in other words, the same approximate Ricmann solver can bc

"recovered" in an arbitrary direction.

It is not clear whether or not this property, though intuitivcly appealing, is

of any direct practical importance for the steady-state computations. There-

fore, wc do not discuss it in detail. However, wc have observed previously that

there arc some links between the approximate Ricmann solver and the design

of DGS in one dimensional case. Therefore, the following conjecture seems
reasonable.
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Conjecture A genuinely multidimensional scheme is factorizable.

It was pointed out in [2] that some of the multidimensional second order correc-

tions can bc added without limiters resulting in a linear 'positive' scheme with

essential multidimensional character. Namely, for the u-momentum equation

in subsonic case, those are the cross-derivative correction terms that compen-

sate for the loss of accuracy due to the artificial dissipation in x direction. For

the v-momentum equations those will bc the terms that compensate for the

loss of accuracy duc to the artificial dissipation in y-direction.

Writing such a scheme in the symbolic form

L_2.juh=0, (52)

and considering the corresponding FDA

FDA( L_2D]) =

p[- h(cOxx+ IvlO_)+ (2]

P[-_

p(o_ - ""-_-_0= )

h_lQ (53)p[-_(lulO= + cO_,_,)+ Q] Oy- 2_ y

p(O_- hv h1-/',+ Q_o_) __

we can easily verified that FDA matrix is factorizable. The added multidimen-

sional correction played a crucial role in achieving this property.

However, the FDA does not uniquely define a discrete scheme. Moreover, not

all the discrete schemes corresponding to a certain FDA are factorizable. A

factorizable scheme corresponding the above mcntioncd FDA was constructed

on a quad-typc grid. The details concerning the scheme as well as the Dis-

tributive Gauss-Seidcl relaxation will be givcn clsewhcre.

6 NUMERICAL EXPERIMENTS

6.1 Multidimensional upwinding

The purpose of the numerical experiments reported in this section is to demon-

strate the robustness of the genuinely multidimensional upwind scheme and

the quality of the numerical solutions obtained by its means. The multigrid

algorithm employs the lexicographic Gauss-Scidcl relaxation.
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Fig. 3. Supersonic flow in a channel over a circular bump, grid 161 × 33: a) solution

obtained by 2FMF - W(2, 1) algorithm; b) the same, except that 3 more W(2, 1)

cycles were performed on the finest grid.

It was demonstrated in [4],[5] that the 2FMG- W(2, 1) algorithm employing

the genuinely two-dimensional adveetion scheme (and Gauss-Seidel relaxation

with direction-free ordering - like Red-Black) is capable of producing second

order accurate (both in smooth regions and in terms of discontinuity location)

solution to such a problem. We expect this to be true for the Euler equations

as well (though more studies should be performed). Therefore, we present

solutions obtained using this algorithm for a few testcases.

6.1.1 Supersonic flow in a channel with a bump.

The test case considered here is a supersonic (Mach=2.9) flow in channel with

a circular bump. The bump is located at the lower wall of the channel at

1 _< x _< 2 and its surface is a circular arch of rr/3 and radius 1. Note that

the actual shape of the domain is a rectangle. The influence of the bump on

the flow is imposed through the boundary conditions: the velocity component

normal to the surface of the bump at a certain location is being reflected.

The experiment uses the finest grid of the size 161 x 33 points. The solution

obtained by 2FMG- W(2,1) algorithm is presented on Fig.3(a). Fig.3(b)

presents the numerical solution obtained using the same algorithm but per-

forming 3 more cycles (total 5) on the finest level.
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Fig. 4. Transonicflowoverawall with a circularbump:freestreamMach=.9,grid
200x 200pts.

6.1.2 Transonic flow over a circular bump

The tcstcasc considered here is concerned with a transonic flow over a fiat

walt with a bump. The surface of the bump is again a circular arch of 7r/3 and

radius 1 and its location is between 3.5 _< x _< 4.5. Again, in order to keep thc

experiments simple at this stage of work, the bump is treated the same way

as in the previous experiments. The frec strcam Mach=.9 in this case. The

shock of the "fish-tail" shapc is generated in this case (Fig.4).

6.1.3 Subcritical flow past an airfoil.

5 Hcrc wc present an experiment concerned with the subcritical flow past an

airfoil. The tcstcase considered is Mach= .63 flow past NACAO012 airfoil at

the angle of attack of 2°. The grid conatins about 9800 nodcs. Pressure and

density contours are presented by Figs.5 (a) and (b) rcspcctivcly.

6.2 Pressure equation based schemes

Here wc illustrate the efficiency of the multigrid algorithm that distinguishes

between the different co-factors of the system. The testcasc is a flow in a

channel with a bump. The mutligrid cycle employed is V(2, 1), the relaxation

is lcxicographic Gauss-Seidcl in the flow direction. The solution contour plots

for the incompressible case arc presented on Fig.6. The sample convergence

rates for the incompressible and compressible subsonic cases can be found in

Fig.7. It can bc obsercvd that the residuals reduction per multigrid cycle is

almost an order of magnitude. Also, the extensive set of computational results

presented in [21] indicates that this behavior is essentially grid-independent.
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Fig. 5. Subcritical flow (Mach = .63) over NACA0012 airfoil, angle of attack - 2°,

grid of -_ 9800 nodes: a) pressure contours; b) density contours.

7 CONCLUSIONS

An approach towards constructing a genuinely multidimensional upwind scheme

was intoduccd in [1 3]. The fundamental advantage of this approach for prac-

tical purposes is that the multidimensional high-resolution mechanism (unlike

the standard one) does not damage the stability properties of the scheme. The

conclusion made in this paper is that the genuinely multidimensional approach

leads to a scheme that is also factorizable. The practical importance of this

property is that an optimally efficient multigrid solver can be obtained through

the construction of an appropriate Distributive Gauss-Seidcl relaxation, that

distinguishes between the different co-factors of the equations. Also, since the

factorizability property can be easily verified, we suggest it is used as the

definition of genuine multidimensionality of a scheme.
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Fig. 6. Incompressible flow in a channel with a bump, grid of 97 x 33 vertices: a)

v-velocity contours; b) pressure contours.
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Fig. 7. Sample convergence histories for incompressible and compressible (Mach=0.2

and Mach=0.5) cases.

We also presented briefly the pressure equation based schemes and demon-

strated on their example what efficiency of the multigrid solver can be ex-

pected if the distinction between the different co-factors of the equations is

made by the algorithm.

Duc to its generality, the genuinely multidimensional approach for discrctiza-

tion of the Euler equations may play a crucial role in constructing a general

optimally efficient multigrid flow solver suitable for engineering computations.

This is because

it does not rely on casting the equations into any special form;

extends to the compressible Navier-Stokes equations.
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